Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae.

نویسندگان

  • Biswa R Acharya
  • Surabhi Raina
  • Shahina B Maqbool
  • Guru Jagadeeswaran
  • Stephen L Mosher
  • Heidi M Appel
  • Jack C Schultz
  • Daniel F Klessig
  • Ramesh Raina
چکیده

Protein kinases play important roles in relaying information from perception of a signal to the effector genes in all organisms. Cysteine-rich receptor-like kinases (CRKs) constitute a sub-family of plant receptor-like kinases (RLKs) with more than 40 members that contain the novel C-X8-C-X2-C motif (DUF26) in the extracellular domains. Here we report molecular characterization of one member of this gene family, CRK13. Expression of this gene is induced more quickly and strongly in response to the avirulent compared with the virulent strains of Pseudomonas syringae, and peaks within 4 h after pathogen infection. In response to dexamethasone (DEX) treatment, plants expressing the CRK13 gene from a DEX-inducible promoter exhibited all tested features of pathogen defense activation, including rapid tissue collapse, accumulation of high levels of several defense-related gene transcripts including PR1, PR5 and ICS1, and accumulation of salicylic acid (SA). In addition, these plants suppressed growth of virulent pathogens by about 20-fold compared with the wild-type Col-0. CRK13-conferred pathogen resistance is salicylic acid-dependent. Gene expression analysis using custom cDNA microarrays revealed a remarkable overlap between the expression profiles of the plants overexpressing CRK13 and the plants treated with Pst DC3000 (avrRpm1). Our studies suggest that upregulation of CRK13 leads to hypersensitive response-associated cell death, and induces defense against pathogens by causing increased accumulation of salicylic acid.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases

Upon recognition of microbe-associated molecular patterns (MAMPs) such as the bacterial flagellin (or the derived peptide flg22) by pattern-recognition receptors (PRRs) such as the FLAGELLIN SENSING2 (FLS2), plants activate the pattern-triggered immunity (PTI) response. The L-type lectin receptor kinase-VI.2 (LecRK-VI.2) is a positive regulator of Arabidopsis thaliana PTI. Cysteine-rich recepto...

متن کامل

Screening for resistance against Pseudomonas syringae in rice-FOX Arabidopsis lines identified a putative receptor-like cytoplasmic kinase gene that confers resistance to major bacterial and fungal pathogens in Arabidopsis and rice

Approximately 20,000 of the rice-FOX Arabidopsis transgenic lines, which overexpress 13,000 rice full-length cDNAs at random in Arabidopsis, were screened for bacterial disease resistance by dip inoculation with Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). The identities of the overexpressed genes were determined in 72 lines that showed consistent resistance after three independent scre...

متن کامل

A prominent role for RCAR3-mediated ABA signaling in response to Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis.

In plant-pathogen interaction, the plant hormone ABA can serve as a crucial modulator of plant responses to biotic as well as abiotic stress. Recent studies have identified pyrabactin resistance (PYR) 1/PYR1-like (PYL)/regulatory component of ABA receptor (RCAR) proteins as an ABA receptor that interacts with the protein phosphatase type 2C (PP2C) family. Here, we examined the functional involv...

متن کامل

The Arabidopsis Lectin Receptor Kinase LecRK-V.5 Represses Stomatal Immunity Induced by Pseudomonas syringae pv. tomato DC3000

Stomata play an important role in plant innate immunity by limiting pathogen entry into leaves but molecular mechanisms regulating stomatal closure upon pathogen perception are not well understood. Here we show that the Arabidopsis thaliana L-type lectin receptor kinase-V.5 (LecRK-V.5) negatively regulates stomatal immunity. Loss of LecRK-V.5 function increased resistance to surface inoculation...

متن کامل

LIK1, A CERK1-Interacting Kinase, Regulates Plant Immune Responses in Arabidopsis

Chitin, an integral component of the fungal cell wall, is one of the best-studied microbe-associated molecular patterns. Previous work identified a LysM receptor-like kinase (LysM-RLK1/CERK1) as the primary chitin receptor in Arabidopsis. In order to identify proteins that interact with CERK1, we conducted a yeast two-hybrid screen using the intracellular kinase domain of CERK1 as the bait. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 50 3  شماره 

صفحات  -

تاریخ انتشار 2007